首页> 外文OA文献 >Bayesian inversions of a dynamic vegetation model at four European grassland sites
【2h】

Bayesian inversions of a dynamic vegetation model at four European grassland sites

机译:欧洲四个草原站点的动态植被模型的贝叶斯反演

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM(ZS) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m−2 day−1 and 0.50 to 1.28 mm day−1, respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic mortality time parameters can be explained by site-specific ecophysiological characteristics.
机译:使用DREAM(ZS)(差分演化自适应大都市)马尔可夫链蒙特卡洛(),使用来自四个欧洲草原站点的涡度协方差数据概率性地将具有10个未知参数的CARAIB(生物圈碳同化)动态植被模型(DVM)进行反演。 MCMC)采样器。我们专注于比较模型反演,同时考虑同方差和异方差涡动协方差残差,其方差既可以先验固定,也可以与模型参数一起推断。校准期间测得的数据与模拟数据之间的协议与以前的研究相当,模拟的每日总初级生产力(GPP),生态系统呼吸(RECO)和蒸散(ET)的均方根误差(RMSE)范围从1.73至2.19、1.04至1.56 g C m-2 day-1和0.50至1.28 mm day-1。在校准期间,与使用异方差残差误差模型相比,使用同方涡旋协方差残差误差模型在测量数据和建模数据之间具有更好的一致性。但是,模型验证实验表明,考虑异方差残余误差进行校准的CARAIB模型的效果更好。因此,使用残差的异方差模型得出的后验参数分布似乎更可靠。即使本文假设的经典线性异方差误差模型不能完全消除GPP残差的异方差,情况仍是如此。尽管校准后的模型通常能够将数据拟合到测量误差之内,但在模型仿真中仍观察到系统偏差。这些可能是由于模型的不足,例如光合作用建模的缺陷。除了剩余误差处理外,还研究了四个草地站点之间模型参数后验分布之间的差异。结果表明,特定叶面积的边缘分布和特征性的死亡时间参数可以通过特定地点的生理生态特征来解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号